※本ページは一般のユーザーの投稿により成り立っており、当社が医学的・科学的根拠を担保するものではありません。ご理解の上、ご活用ください。
ママリ
その他の疑問

算数の教え方について、自分の頃と現在の違いについて相談されました。学校の教え方と個人の解き方の違いについて悩んでいます。学校での採点方法や解き方についても不安があるようです。

【算数の教え方について】

算数が苦手な姪っ子に勉強教えてあげてって頼まれたんですが、今って自分の頃とは教え方違いますよね⁇

算数数学得意だったので自分の頃の解き方で分かりやすく説明はできますが、学校とやり方が違うと余計に混乱しますよね⁇

学校の教え方と違うと思うから学校で先生に質問するようにした方がいいんじゃないかな⁇って言ったんですけど義姉にそれでも頼まれてます。

私の頃は答えだけじゃなく計算途中の解き方も採点で見られたりとかありましたが、今もそうですか⁇
だとしたら学校と違う解き方してたら良くないですよね⁇
答えあってればどんな解き方でも良いって感じですか⁇

コメント

よっぴ

小学生ですか?
教科書見ながら教えたら、やり方載っていると思いますよ(^^)

  • ママリ

    ママリ


    小3です!すでに算数ついていけてないらしく😂

    やっぱり学校のやり方を見て教えた方がいいですよね!
    学校で先生のそのやり方の説明で理解できてないみたいなので私の頃の解き方でもし理解できるならと思ったんですがそれは辞めておいた方が良さそうですよね!

    • 9月4日
  • よっぴ

    よっぴ

    2年生ですが、宿題のプリントもやり方の過程で□に数字を当てはめていく感じになっていますし、ママリさんが教科書やプリントでやり方を理解して、それに近いやり方で教えてあげたらいいと思いますよ(^^)先生と多少教え方が違っても、理解につながれば大丈夫だと思いますよ(^-^)

    というか、どこの親も、この教え方でいいのか迷って独自で教えていると思います。

    • 9月4日
  • ママリ

    ママリ


    やり方の過程も当てはめていく感じになってるんですね!
    でしたらやはり学校のやり方で進めないと混乱を生むかもしれないので、まずは学校通りに教えてみて理解できなそうだったら私の頃のやり方も混じえて説明してみようと思います😊
    ありがとうございます!

    • 9月4日
mamari

塾講師をしています。
解き方はそれほど変わらないと思いますが、教え方は、なぜ?どうして?を重視していると思います。
どのように考えれば解けるだろう?と問いかけて考えさせる感じです。

ところが、当然ですが、算数が苦手な子は、そこ(なぜ?どうして?)が苦手です。
また、苦手意識を持ってしまうと、よけいに思考停止してしまうようで、説明を右から左へ流してしまう子もいます。

なぜ?どうして?の部分がわかる方がよいけれど、わからなくても、解き方が合っていれば大丈夫です。
教科書を見ながら、ポイントを教えてあげて、できるようになってから、なぜそのように解くのかを考えさせてもよいと思います😊

  • ママリ

    ママリ


    なるほど!なぜそうするのかを理解できていれば応用も効きますもんね☺️
    すでに苦手意識を持ってるようなのでどこから理解できなくなったのか遡る必要もありそうです😂
    できるようになってからなぜを考えるようにしてみようと思います!
    ありがとうございます!

    • 9月4日
  • mamari

    mamari


    小31学期でで躓くとすれば、時刻でしょうか。それとも割り算。
    九九が曖昧だとすれば、九九を復習する必要があるかもしれません。
    できないことばかりやっていると、なかなか進歩しないので、簡単な問題を溶かせてから、(解けそうな)少しだけ難しい問題を出して、できる!わかる!すごい!を体験させてあげるとよいと思います。

    かけ算の式について
    箱にりんごが3個ずつ入っています。2箱あったらりんごは何個でしょう。
    中学生なら、3×2でも2×3でも大丈夫だと思います。
    小学生(特に低学年)は、
    2×3 は バツになります。
    3個ずつのかたまり の2倍(×2) を表す式にしなければならないからです。

    割り算の意味(内容)を考えると、もっとわからなくなります。

    例えば
    6÷2=3 にも、いくつかの意味があります。

    6個のみかんを2個ずつ箱に入れます。箱はいくつ必要ですか。
    ◯◯ ◯◯ ◯◯

    6個のみかんを2人で分けます。1人何個ずつ分けられますか。
    ◯◯◯ ◯◯◯

    状態(イメージ)は全然違うのに、どちらも式は
    6÷2 です。

    このような細かい部分は、高学年または中高生になると、ほとんど考えなくなります。

    私は、算数はいろいろな考え方や解き方があるから、担任の先生(学校の先生)と違うところがあるかもしれない。と前置きして、生徒が理解しやすい説明で教えるようにしています。その上で、学校で先生が◯◯と言ったのがわからなかった とか 学校のノート(板書)のここがわからない 等、質問を受け、先生は、こういう教え方をしたかったんだと思うよ という解説をしてあげるようにしています。

    長々と書きましたが、あまり気負わなくても、楽しく勉強できれば、それで大丈夫だと思います😊

    • 9月4日
  • ママリ

    ママリ


    おそらく九九をスムーズに言えるほど身についていない感じはあります。
    できた!という嬉しい経験はモチベーションになりますね☺️
    例がものすごく分かりやすいです。
    とりあえずは学校の方法も私の解き方も説明してみて本人が解き方掴んでくれるように、苦手意識持たないように分かりやすい例えなども混じえつつやってみようと思います✨
    ありがとうございます!

    • 9月4日